



# Effect of Natural Gas Fuel Composition on Vehicle Emissions and Performance

2010 Clean Energy & Air Quality Virtual Conference Series Air Quality Implications of Increasing Alternative Fuel Use

**November 2, 2010** 

**Presented By:** 

Tom Durbin, George Karavalakis, Kurt Bumiller, Mark Villela, and Wayne Miller

University of California, Riverside
Bourns College of Engineering
Center for Environmental Research and Technology





### **Project Motivation**

- Liquefied natural gas (LNG) and NG demand will likely increase over the next decades.
- California's current needs met largely by domestic and Canadian imports
  - LNG imports from Asia or other parts of the Pacific Rim
  - "grand fathered" local sources of NG
- NG from a wider range of sources is expected to have more variation in composition and properties.
- Broader ranges of NG composition and properties could impact performance and/or emissions of vehicles.





#### **Program Plan**

- Project Advisory Committee oversees the planning and reporting for the project.
- A 2-phase program was developed.
- Phase 1: Light-Duty Vehicle Testing
  - 2 vehicles on 4 blends.
- Phase 2: Chassis dynamometer testing of heavy-duty vehicles.
  - 3 vehicles on 6-7 blends.
- Project funding from California Energy Commission (CEC), CARB, and SCAQMD





### **NG Light-Duty Vehicle Testing**

- Testing in CE-CERT's Vehicle Emissions Research Laboratory
- 2 Vehicles
  - 2006 Honda Civic GX, SULEV certified, OEM
  - 2002 Ford Crown Victoria, ULEV certified, OEM, older technology
  - 4 fuel blends
- Test cycles are FTP and Unified Cycle with 3 replicates on each fuel
  - Power curves on each of the blends
- Status Testing completed, draft memorandum under review







### **Gas blends for Testing**

- Average So. Cal. Gas pipeline gas.
- CARB specification natural gas with average properties.
- High Wobbe number gas extreme local production gas
- The High Wobbe number gas blended down to 1385 w/ N<sub>2</sub>.

| Gas# | Description        | methane | ethane | propane | I-butane | N2   | MN  | Wobbe # | HHV  |
|------|--------------------|---------|--------|---------|----------|------|-----|---------|------|
| 1    | Baseline, Line gas | 96.08   | 1.78   | 0.37    | 0.16     | 1.62 | 100 | 1344    | 1020 |
| 2    | CARB spec gas      | 90.3    | 4      | 2       |          | 3.7  | 89  | 1330    | 1038 |
| 3    | Hi Wobbe           | 84.03   | 9.36   | 3.76    | 1.85     | 1    | 69  | 1437    | 1175 |
| 4    | modified gas 3     | 84.03   | 6.86   | 3.76    | 1.85     | 3.5  | 71  | 1385    | 1131 |





# **Light-Duty Test Cycles**

#### • FTP



#### Unified Cycle







# **Light-Duty NGV Tests - THC Results**

- THC showed opposite trends for vehicles.
- Sharp increases in THC emissions with the use of Modified Gas for Honda Civic over all operating conditions.
- For the Crown Victoria, the baseline gas had the highest THC emissions.



**Honda Civic THC Results** 



Ford Crown Victoria THC Results





# **Light-Duty NGV Tests - NMHC Results**

- NMHC was only measureable for the modified and high wobbe
  - Especially during the cold start
- NMHC for CARB spec gas also measurable during cold start





**Honda Civic NMHC Results** 

**Ford Crown Victoria NMHC Results** 





# **Light-Duty NGV Tests - NO<sub>x</sub> Results**

- NO<sub>x</sub> emissions did not show consistent trends over all cycles/vehicle/fuels
- For the Honda, NO<sub>x</sub> emissions were higher for the CARB spec. gas.
- For the Crown Victoria, no statistically significant NO<sub>x</sub> emissions impacts except under cold start.



Honda Civic NO<sub>x</sub> Results

Ford Crown Victoria NO<sub>x</sub> Results





## **Light-Duty NGV Tests - CO Results**

- CO Emissions did not show significant trends in most cases.
- For Honda, CO emissions higher for modified Hi wobbe gas over FTP
- For Crown Vic, CO emissions were lower for CARB spec fuel and higher for the Hi Wobbe fuel over the Unified.
- Also some impacts during the cold start.





**Honda Civic CO Results** 

**Ford Crown Victoria CO Results** 





# **Light-Duty NGV Tests – CO<sub>2</sub> Results**

- CO<sub>2</sub> emissions were generally higher for the Hi wobbe and Modified blends.
- CO<sub>2</sub> emissions higher for CARB spec fuel during cold start for Honda.



Honda Civic CO<sub>2</sub> Results

Ford Crown Victoria CO<sub>2</sub> Results





# **Light-Duty NGV Tests – Fuel Economy Results**

- On a volumetric basis, the higher energy fuels (Hi Wobbe and Modified) showed the highest fuel economy.
- CARB spec fuel also had better fuel economy for many vehicle/cycle combinations.







# **Light-Duty NGV Tests – Fuel Economy Results**

- For Honda, some of the blends show lower "energy equivalent" fuel economy depending on the cycle.
- For Crown Vic, perhaps slightly higher "energy equivalent" fuel economy for some blends.



**Honda Civic Fuel Economy Results** 

Fuel Economy Results





### **Heavy-Duty Chassis Dynamometer Testing**

- Testing to be conducted at CE-CERT's Heavy-Duty Chassis Dynamometer Test Facility
- Test Vehicles
  - Transit Bus with a 2009 Cummins ISL-G 8.9L identified
  - Refuse Hauler with a Cummins 8.3L C-Gas Plus (use trans bus with same engine if vehicle can not be found)
  - Transit Bus with a 2003-2004 John Deere 8.1L 6081H engine identified
- 6-7 fuel blends







#### **Vehicle Selection**

- John Deere engine 6081H bus
  - Older engine that comprises a substantial fraction of the school bus/transit bus population
- Cummins ISL-G bus
  - Newer engine that will be more representative of the future fleet
- Cummins C-Gas Plus Waste Hauler
  - Comprises high fraction of NGV waste hauler population
- A suggestion was made that the John Deere engine be replaced by a more modern Doosan or ESI engine
  - These new technologies composed too small a fraction of the fleet to impact the short term inventory
- Replacing the John Deere with C-Gas Plus transit bus also considered
  - It was decided to keep the wider range of engines





# Gas blends for HD Chassis Dyno Testing

- Pipeline gas representative of Texas source (Baseline)
- Pipeline gas representative of Rocky Mountain source (Basline)
- Gas representative of Peruvian LNG
  - Highest heating value economical for Energia Costa Azul to process
- Gas representative of Middle Eastern blend LNG
  - High Wobbe number > 1400
  - Provides information on how emissions might change with more extreme compositional differences
- Two gases representative of gases located within the State with low methane numbers and varying HC composition
  - Will provide information on the effects of fuel composition on emissions in terms of varying HC percentages





### Gas blends for HD Chassis Dyno Testing

**Table 1. Test Fuel Specifications** 

| Gas |                               |         |        |         |          |      |      |         |      |
|-----|-------------------------------|---------|--------|---------|----------|------|------|---------|------|
| #   | Description                   | methane | ethane | propane | I-butane | N2   | MN   | Wobbe # | HHV  |
|     | Baseline, Texas               |         |        |         |          |      |      |         |      |
| 1   | Pipeline                      | 96.08   | 1.78   | 0.37    | 0.16     | 1.62 | 100  | 1344    | 1020 |
|     | Baseline, Rocky               | 95.5    | 2.64   | 0.5     | 0.23     | 1.14 | 96   | 1360    | 1036 |
| 2   | Mountain Pipeline             |         |        |         |          |      |      |         |      |
| 3   | Peruvian LNG                  | 88.3    | 10.5   | 0       | 0        | 1.2  | 84   | 1385    | 1083 |
| 4   | Middle East LNG-<br>Untreated | 89.3    | 6.8    | 2.6     | 1.3      | 0    | 80   | 1428    | 1136 |
| 5   | Associated High<br>Ethane     | 83.65   | 10.75  | 2.7     | 0.2      | 2.7  | 75.3 | 1385    | 1115 |
| 6   | Associated High<br>Propane    | 87.2    | 4.5    | 4.4     | 1.2      | 2.7  | 75   | 1385    | 1116 |

- 7<sup>th</sup> gas will be LNG in the tank of the waste hauler at the time it is tested.
- The composition of this gas will be measured separately





# **HD Chassis Dyno Testing - continued**

- Test cycles
  - Buses Central Business District
  - Refuse Hauler William H. Martin refuse truck cycle
- Test Matrix

Table 2. Chassis Dynamometer Test Matrix For each Test Vehicle

| Test Day                | Morning Schedule<br>(assumes 3 replicates) | Afternoon Schedule<br>(assumes 3<br>replicates) |  |  |  |  |  |
|-------------------------|--------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| CBD or WHM Refuse Cycle |                                            |                                                 |  |  |  |  |  |
| Day 1                   | 111                                        | 222                                             |  |  |  |  |  |
| Day 2                   | 222                                        | 333                                             |  |  |  |  |  |
| Day 3                   | 333                                        | 444                                             |  |  |  |  |  |
| Day 4                   | 444                                        | 555                                             |  |  |  |  |  |
| Day 5                   | 555                                        | 666                                             |  |  |  |  |  |
| Day 6*                  | 666                                        | 777                                             |  |  |  |  |  |
| Day 7                   | 777                                        | 111                                             |  |  |  |  |  |

1 = Gas #1, 2 = Gas #2, 3 = Gas #3, 4 = Gas #4, 5 = Gas #5

<sup>\*</sup> Gas 777 will be used in the Waste Hauler





# **HD Chassis Dyno Testing - continued**

#### Measurements

- Power map on each fuel max power readings at 4-5 different speeds
- THC, NMHC, CH<sub>4</sub>, CO, NO<sub>x</sub>, NO, NO<sub>2</sub>, CO<sub>2</sub>, and PM.
- NH<sub>3</sub> sampling with a tunable diode laser
- Carbonyls (including formaldehyde and acetaldehyde) via DNPH + HPLC
  - 3-4 tests per vehicle/fuel combination
- PM number 3022 CPC
- real-time particle size UCR's fast scan SMPS (secondary importance)
- Possibility of additional analyses for PAHs being investigated





# **Central Business District Test Cycle**

- 2 iterations of 560 second cycle with a warmup
- Average speed = 20.23 km/hr Driving distance = 3.22 km



Figure 1. Double CBD Cycle with Warmup





# **Refuse Truck Test Cycle**

- 3 sections: transport, curbside pickup, and compaction + warmup
- Compaction is final 155 seconds use 30 mph + 80 hp load



Figure 2. Refuse Truck Cycle





# **Program Schedule**

- Light-duty Testing
  - Draft Memorandum and associated journal article on this testing completed and currently under review
- Heavy-duty Chassis Testing
  - Test gases should be ready for testing by late November/early December
  - Testing is planned for Dec. 2010 Feb. 2011 (depending on availability of vehicles)
  - Draft Memorandum on this testing completed 3-4 months after completion of testing (including toxics and exotic species)